# Hamming Weights and rational points on algebraic hypersurfaces over finite fields 

Adnen SBOUI

December 15th 2010


NANYANG TECHNOLOGICAL UNIVERSITY

School of Physical and Mathematical Sciences
(1) Introduction

- Notations and definitions
- $\operatorname{GRM}(q, d, n)$ and $\operatorname{PRM}(q, d, n)$ Codes
(2) Results on maximum number of zeros and $d_{m}$
- Affine Case
- Maximal Hypersurfaces for the affine case
- the projective case
- Maximal Hypersurfaces for the projective case
(3) weights above the minimum distance
- The second weight
- First weight reached by hypersurface not $\mathcal{H A}$
- Curves with non-linear factors reaching $N_{3}$

4 Minimal Arrangement, particular weight
(5) Rational points and Generalized Hamming Weight

We denote :

- $\mathbb{F}_{q}$ a finite field with $q$ elements $(q$ a power of a prime $p$ ).
- $\mathbb{F}_{q}\left[X_{0}, X_{1}, \ldots, X_{n}\right]_{d}^{h} \cup\{0\}$ the vector space of homogeneous polynomials in $n+1$ variables with coefficients in $\mathbb{F}_{q}$ and of degree $d$.
- $\mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$ the $n$-dimensional projective space over $\mathbb{F}_{q}$.
- $\Pi_{n}=\# \mathbb{P}^{n}\left(\mathbb{F}_{q}\right)=\frac{q^{n+1}-1}{q-1}$, the number of rational points of $\mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$.
- $\Pi_{-1}=0$ (by convention, which meaning the number of points in the empty set ).

We suppose $d \leq n(q-1)$ and $n \geq 2$.

The projective Reed-Muller code $\operatorname{PRM}(q, d, n)$ is the image of the map :

$$
\begin{aligned}
\Phi: \mathbb{F}_{q}\left[X_{0}, X_{1}, \ldots, X_{n}\right]_{d}^{h} \cup\{0\} & \longrightarrow \mathbb{F}_{q}^{\Pi_{n}} \\
f & \longmapsto(e v f(v))_{v \in \mathbb{P}^{n}\left(\mathbb{F}_{q}\right)}
\end{aligned}
$$

with

$$
\begin{array}{cl}
\mathrm{evf}: \mathbb{P}^{n}\left(\mathbb{F}_{q}\right) & \longrightarrow \mathbb{F}_{q} \\
v=\left(x_{0}: \ldots: x_{n}\right) & \longmapsto \frac{f\left(x_{0}, \ldots, x_{n}\right)}{x_{i}^{d}}
\end{array}
$$

where $x_{i}$ is the first non-zero component of $v=\left(x_{0}: \ldots: x_{n}\right)$.

- a codeword $c \in \operatorname{PRM}(q, d, n)$ is defined by the vector :

$$
c=\left(\operatorname{ev} f\left(v_{1}\right), \ldots, \operatorname{ev} f\left(v_{n_{n}}\right)\right) ; \text { with } f \in \mathbb{F}_{q}\left[X_{0}, X_{1}, \ldots, X_{n}\right]_{d}^{h} \cup\{0\} .
$$

- The weight of $c$ is the number of its non-zero coordinates.
- $Z_{q}(f)$ the set of zeros of $f, \# Z_{q}(f)$ is the number of points of the hypersurface $S$ defined by $f$, denoted also $\# S$.
- $N_{1}=\max _{f \in \mathbb{F}_{q}\left[X_{0}, X_{1}, \ldots, x_{n}\right]_{d}^{h}} \# Z_{q}(f)$;
- $\mathcal{P}_{1}$ : the set of non-zero polynomials $f$ such that $\# Z_{q}(f)=N_{1}$.
- The first weight, which is the minimum distance, is $w_{1}=d_{m}=\Pi_{n}-N_{1}$.
- $N_{i}=\max _{f \in \mathbb{F}_{q}\left[X_{0}, X_{1}, \ldots, X_{n}\right]_{d}^{h} \backslash\left\{\mathcal{P}_{1} \cup \ldots \cup \mathcal{P}_{i-1}\right\}} \# Z_{q}(f)$, for $i \geq 2$.
- The $i$-th weight is $w_{i}=\Pi_{n}-N_{i}$, for $i \geq 1$.
- $\mathcal{P}_{i}^{p}$ : the set of polynomials $f \in \mathbb{F}_{q}\left[X_{0}, X_{1}, \ldots, X_{n}\right]_{d}^{h}$ such that $\# Z_{q}(f)=N_{i}$. It is also the number of codewords of weight $w_{i}$ in $\operatorname{PRM}(q, d, n)$.

A generalized classical Reed-Muller codes $\operatorname{GRM}(q, d, n)$ is defined as the image of the map

$$
\begin{aligned}
\Phi: \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]_{d} \cup\{0\} & \longrightarrow \mathbb{F}_{q}^{q^{n}} \\
f & \longmapsto(f(v))_{v \in \mathbb{F}_{q}^{n}}
\end{aligned}
$$

Then, the equivalent numbers, $N_{i}, w_{i}, \mathcal{P}_{i}^{a}$.. already defined in the projective case follows.

The minimum distance is given firstly by Kasami, Lin and Peterson(1968)

## Theorem

For $0<d<n(q-1)$, with $d=r(q-1)+s$ and $s<q-1$ :
(a) The maximum number of zeros of polynomial in $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]_{d}$ is

$$
N_{1}=q^{n}-(q-s) q^{n-r-1}
$$

(b) The minimum distance of the generalized Reed-Muller codes $\operatorname{GRM}(q, d, n)$ is

$$
d_{\min }=w_{1}=(q-s) q^{n-r-1} .
$$

Moreover, Delsarte, Goethals and Mac Williams characterize all polynomials having $N_{1}$ zeros.

## Theorem

For $0<d<n(q-1)$, with $d=r(q-1)+s$ and $s<q-1$ :
Modulo the action of the automorphism group $G(n, q)$, whose elements acting as permutations of the $n$ coordinates, the associated polynomial of any minimum weight codeword of $\operatorname{GRM}(q, d, n)$ is

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{n}\right)=t_{0} \prod_{i=1}^{r}\left[1-\left(x_{i}-t_{i}\right)^{q-1}\right] \prod_{j=1}^{s}\left(x_{r+1}-t_{j}^{\prime}\right) \tag{1}
\end{equation*}
$$

of degree $d=r(q-1)+s$, where $t_{j}^{\prime}$ are distinct elements of $\mathbb{F}_{q}$ and the $t_{i}$ are arbitrary elements of $\mathbb{F}_{q}$, with $t_{0} \neq 0$.

The maximal hypersurfaces $\mathcal{H}_{1}^{a}$ of degree $d=r(q-1)+s$, associated to the previous polynomials are hyperplane arrangements having the following geometric configuration :
(i) For $r$ directions in $\mathbb{F}_{q}^{n}$, we have $q-1$ parallel hyperplanes in each one,
(ii) in another direction, the $(r+1)$ th one, we have $s$ parallel hyperplanes.
$>$ The number of minimum weight codewords in $\operatorname{GRM}(q, d, n)$ is

$$
\# \mathcal{P}_{1}^{a}=(q-1) q^{r} \frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \ldots\left(q^{r+1}-1\right)}{\left(q^{n-r}-1\right)\left(q^{n-r-1}-1\right) \ldots(q-1)} \eta_{s},
$$

with

$$
\eta_{s}=\left\{\begin{array}{l}
\binom{q}{s} \frac{q^{n-r}-1}{q-1} \text { if } 0<s<q-1 \\
1 \text { if } s=0
\end{array}\right.
$$

The minimum distance is given :

## Theorem

(a) For $0<d \leq n(q-1)$, with $d-1=r(q-1)+s$ and $s<q-1$, (A. B. Sørensen )

The maximum number of zeros of an homogeneous polynomial in $\mathbb{F}_{q}\left[X_{0}, X_{1}, \ldots, X_{n}\right]_{d}^{h}$ is

$$
\begin{equation*}
N_{1}=\Pi_{n}-(q-s) q^{n-r-1} \tag{2}
\end{equation*}
$$

(b) The minimum distance of the projective generalized Reed-Muller codes $\operatorname{PRM}(q, d, n)$ is

$$
d_{m}=w_{1}=(q-s) q^{n-r-1}
$$

(c) For $d \leq q$ (J.-P. Serre),

The maximal number of $\mathbb{F}_{q}$-rational points is $N_{1}=d q^{n-1}+\Pi_{n-2}$. This number is reached only by hypersurfaces splits into d distinct hyperplanes meeting in the same linear subspace of codimension 2.
a characterization of maximal projective hypersurfaces is given by Rolland (SAGA 2008),

## Lemma

A hypersurface, defined by one maximal polynomial $P$, attaining $N_{1}\left(=\Pi_{n}-(q-s) q^{n-r-1}\right)$ points is such that: it exists an hyperplane $H$ defined on $\mathbb{F}_{q}$ such that $P$ vanishes on the whole $H$, and $P$ restricted to the affine space $\mathbb{P}^{n}\left(\mathbb{F}_{q}\right) \backslash H$ is a maximal affine hypersurface as described in 2. Therefore $P$ is a product of $d$ homogeneous polynomials of degree 1 .
determination of maximal polynomials and the geometric configuration of the corresponding hypersurfaces when $q<d \leq n(q-1)$ (F. OZBUDAK and A. SBOUI (2009))

## Theorem

The maximum number of zeros $N_{1}=\Pi_{n}-(q-s) q^{n-r-1}$ is reached by one polynomial in the form :

$$
\begin{equation*}
P\left(x_{0}, \ldots, x_{n}\right)=x_{0} \prod_{i=1}^{r}\left[\left(x_{i}-t_{i} x_{0}\right)^{q-1}-x_{0}^{q-1}\right] \prod_{j=1}^{s}\left(x_{r+1}-t_{j}^{\prime} x_{0}\right) \tag{3}
\end{equation*}
$$

which can be written as product of $d$ linear factors :

$$
\begin{equation*}
P\left(x_{0}, \ldots, x_{n}\right)=x_{0} \prod_{i=1}^{r} \prod_{\alpha \in \mathbb{F}_{q} \backslash\left\{t_{i}\right\}}\left(x_{i}-\alpha x_{0}\right) \prod_{j=1}^{s}\left(x_{r+1}-t_{j}^{\prime} x_{0}\right), \tag{4}
\end{equation*}
$$

of degree $d$, such that $d-1=r(q-1)+s$, where $t_{j}^{\prime}$ are distinct elements of $\mathbb{F}_{q}$ and the $t_{i}$ are arbitrary elements of $\mathbb{F}_{q}$.

The maximal hypersurfaces $\mathcal{H}_{1}^{p}$ associated to the previous polynomials are hyperplane arrangements having the following geometric configuration :
(a) One hyperplane $H_{0}$ considered as hyperplane at the infinity, we denote it often by $H_{\infty}$.
(b) There are $r$ blocks of $q-1$ hyperplanes in each one, and an $(r+1)$ th block of $s$ hyperplanes, such that the hyperplanes of each block meet in a common linear subvariety of codimension 2 contained in $H_{\infty}$.
(c) The $r+1$ linear subvarieties of codimension 2 contained in $H_{\infty}$ are in general position, i.e. form an arrangement of $r+1$ hyperplanes in general position in the $(n-1)$-dimensional projective space $H_{\infty} \cong \mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right)$.

Number of minimum distance codewords of the generalized projective Reed-Muller codes $\operatorname{GRM}(q, d, n), d-1=r(q-1)+s$.

## Corollary

The number of minimum weight codewords in $\operatorname{PRM}(q, d, n)$ is

$$
\# \mathcal{P}_{1}^{p}=\frac{\Pi_{n}}{d} \# \mathcal{P}_{1}^{a}
$$

which gives

$$
\mathcal{P}_{1}^{p}=\frac{\left(q^{n+1}-1\right) q^{r}}{d} \frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \ldots\left(q^{r+1}-1\right)}{\left(q^{n-r}-1\right)\left(q^{n-r-1}-1\right) \ldots(q-1)} \eta_{s}
$$

with

$$
\eta_{s}=\left\{\begin{array}{l}
\binom{q}{s} \frac{q^{n-r}-1}{q-1} \text { if } 0<s<q-1 \\
1 \text { if } s=0
\end{array}\right.
$$

The second weight $w_{2}$, affine case :

- computation of the second weight $w_{2}=q^{n}-d q^{n-1}+(d-1) q^{n-2}$, for $q$ quite larger than $d$, by Rolland-Cherdieu. The result is extended by Sboui for $d<q / 2$ ).
- using Gröbner basis theoretical methods (O. Geil (2008)) resolve the case $q / 2<d<q$ $d=a(q-1)+b, n \geq 3, q \geq 3$ and $q-1<d \leq(n-1)(q-1)$, the second weight $w_{2}$ of $\operatorname{GRM}(q, d, n)$ is given by
- for $q=3$
(a) if $1 \leq a \leq n-1$ and $b=0$ then $w_{2}=4 \times 3^{n-a-1}$;
(b) if $1 \leq a<n-1$ and $b=1$ then $7 \times 3^{n-a-2} \leq w_{2} \leq 8 \times 3^{n-a-2}$;
- for $q \geq 4$
(a) if $1 \leq a<n-1$ and $2 \leq b<q-1$ then $w_{2}=q^{n-a-2}(q-1)(q-b+1) ;$
(b) if $1 \leq a \leq n-1$ and $b=0$, then $w_{2}=2 q^{n-a-1}(q-1)$;
(c) if $1 \leq a<n-1$ and $b=1$, then $q^{n-a}-2 q^{n-a-2} \leq w_{2} \leq q^{n-a}$.? $w_{2}$

Second and third weights $w_{2}, w_{3}$, projective case : (F. Rodier and A. Sboui) :

- $w_{2}=q^{n}-(d-1) q^{n-1}+(d-2) q^{n-2}$, with $q \geq 2 d$.

This result is extended to $q>d$ when ( $q=p$ prime).

- $w_{3}=q^{n}-(d-1) q^{n-1}+2(d-3) q^{n-2}$, with $q \geq 3 d$.

This result is extended to $q>d+2$ ( $q=p$ prime $)$.

- For $d<\frac{q+1}{2}+2$, the second and the third weights are reached only by algebraic hypersurfaces which are arrangement of $d$ hyperplanes.
- For $\frac{q+1}{2}+2 \leq d<q$, the third weight $w_{3}$ is also reached by hypersurfaces containing an irreducible quadric.

Example
$S: f\left(x_{0}, \ldots, x_{n}\right)=\left(x_{2}^{2}-x_{0} x_{1}\right) x_{0} x_{1} \prod_{i=1}^{d-4}\left(x_{0}-\alpha_{i} x_{1}\right)$,
where $d=\frac{q+1}{2}+3, q$ odd, the $\alpha_{i}$ are $d-4\left(=\frac{q-1}{2}\right)$ non-squares.

## Proposition, case $q$ even

Let $C$ a projective plane curve of degree $d$ over $\mathbb{F}_{q}$,
$d=\frac{q}{2}+t$ and $3 \leq t \leq \frac{q}{2}$, composed of $d-2$ concurrent lines to the same point $\omega$, and a conic $\mathscr{C}$ of nucleus distinct from $\omega$.

If among these lines

- $\frac{q}{2}$ do not intersect $\mathscr{C}$;
- and there is a tangent line to $\mathscr{C}$.

Then $\# C=N_{3}$.

## Proposition, case $q$ odd

Let $C$ a projective plane curve of degree $d$ over $\mathbb{F}_{q}, d=\frac{q+1}{2}+t$, $2 \leq t \leq \frac{q-1}{2}$, composed of $d-2$ concurrent lines to the same point $\omega$ and a conic $\mathscr{C}$.

If we are in the two following situations :
(a) $\omega \in \operatorname{Int}(\mathscr{C})$ : among the $d-2$ lines $\frac{q+1}{2}$ do not intersect $\mathscr{C}$;
(b) $\omega \in \operatorname{Ext}(\mathscr{C})$ : among the $d-2$ lines $\frac{q-1}{2}$ do not intersect $\mathscr{C}$ and two lines are tangent to $\mathscr{C}$.

Then $\# C=N_{3}$.

## (Rodier and Sboui)

Projectif case
$\mathcal{A}_{\text {min }}^{d}$ : a minimal arrangement of $d$ hyperplanes is such that : for every $1 \leq i, j \leq d, i \neq j$, we have $H_{i} \cap H_{j}=K_{j}^{i}$, where the $K_{j}^{i}$ are $\binom{d}{2}$ subspaces of dimension $n-2$ all distinct, and meeting in a common subspace of dimension $n-3$.
(2-dimension linear system of hyperplane)

Consequence of $\mathcal{A}_{\text {min }}^{d}$

$$
\begin{aligned}
& \text { For } q>\frac{d(d-1)}{2} \\
& >\operatorname{tr}_{H_{i}}\left(\mathscr{A}_{\min }^{d+1} \backslash H_{i}\right)=\mathscr{A}_{1}^{d} \\
& \text { (pencil of hyperplanes) in } \\
& \mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right) \\
& N\left(\mathscr{A}_{\min }^{d}\right)= \\
& d q^{n-1}+\Pi_{n-2}-\frac{(d-1)(d-2)}{2} q^{n-2} .
\end{aligned}
$$

Any algebraic projective hypersurface $S$ of degree $d$, not union of $d$ hyperplanes, contains less points than any algebraic hypersurface which is the union of $d$ hyperplanes.
$S: f \in \mathbb{F}_{q}\left[X_{0}, X_{1}, \ldots, X_{n}\right]_{d}^{h}$, not product of $d$ linear factors :

$$
\# Z_{q}(f)<N_{1}-\frac{(d-1)(d-2)}{2} q^{n-2}
$$

Application: Highest weight obtained by an hyperplane arrangement

$$
w_{i} ?=q^{n}-(d-1) q^{n-1}+\frac{(d-1)(d-2)}{2} q^{n-2} .
$$

Which is the highest weight given by an hyperplane arrangement.

Let $C$ be a $[n, k]$ linear code and $D$ be a subcode. The support of $D$, denoted $\chi(D)$, is the set of not-always-zero coordinate positions of $D$, i.e., $\chi(C):=\left\{i: \exists\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in C, x_{i} \neq 0\right\}$.

A one-dimensional subcode $D$ of $C$ consists of two codewords : the zero codeword, and a nonzero codeword.
The support of $D$ equals to the Hamming weight of the nonzero codeword.

Based on this perspective, we define the $r$ th generalized Hamming weight of $C$, denoted $d_{r}(C)$, to be the size of the smallest support of an r-dimensional subcode of $C$, i.e.,
$d_{r}(C):=\min \{|\chi(D)|: D$ is a subcode of $C$ with rank $r\}$.

Note that $d_{1}(C)$ equals to the traditional minimum Hamming $d_{m}$ weight of $C$.

The weight hierarchy of a linear code $C$ is defined to be the set of integers $\left\{d_{r}(c), 1 \leq r \leq k\right\}$

## Theorem

(Monotonicity) : For an $[n, k]$ linear code $C$ with $k>0$, we have $0<d_{1}(C)<d_{2}(C)<\ldots<d_{k}(C) \leq n$.

The study of generalized Hamming weights has been motivated by several applications in cryptography :

- application to t-resilient functions
- application to cryptography of wire-tap channel of type II. In fact, the generalized Hamming weights characterize the performance of a linear code used for that channel


## Geometric interpretation of Generalized Weights

The minimum distance equals the minimal number of points of a projective system lying outside a hyperplane $d_{1}=n-\max \left\{|X \cap H|: H\right.$ a hyperplane in $\left.\mathbb{P}^{k-1}\left(\mathbb{F}_{q}\right)\right\}$
and the $r$ th generalized weight equals the minimal number of points outside a linear subspace of codimension $r$ :
$d_{r}=n-\max \{|X \cap \Pi|:$
$\Pi$ a projective subspace of codimension $\left.r \operatorname{in} \mathbb{P}^{k-1}\left(\mathbb{F}_{q}\right)\right\}$

## Generalized Weights for the case of Reed-Muller codes

For higher order Reed-Muller codes the problem is much more subtle and reduces to the following geometric question :

Problem (a): Let $f_{1}, \ldots, f_{r}$ be linearly independent polynomials in $n$ variables of degree $d$ or less. What is the maximum possible number of solutions in $\mathbb{F}_{q}^{n}$ of the system

$$
f_{1}=\ldots=f_{r}=0
$$

For projective Reed-Muller codes the problem reads as follows :

Problem (b) : Let $F_{1}, \ldots, F_{r}$, be linearly independent homogeneous forms in $n+1$ variables of degree $d$.
What is the maximum possible number of $\mathbb{F}_{q}$-points on an algebraic set defined by

$$
F_{1}=\ldots=F_{r}=O ?
$$

## Some results

Picture of what is known on the subject :

## Corollary

The second generalized Hamming weight of a projective $q$-ary Reed-Muller codes $\operatorname{PRM}(q, d, n)$ of order $d<q-1$ is equal to

$$
d_{2}=\Pi_{n}-(d-1) q^{n-1}-\pi_{n-2}-q^{n-2}
$$

## Conjecture (Boguslavsky)

the weight hierarchy of a projective q-ary Reed-Muller codes $\operatorname{PRM}(q, d, n)$ of order $d<q$ is given by

$$
d_{r}=\Pi_{n}-\sum_{i=j}^{n} \alpha_{i}\left(\Pi_{n-1}-\Pi_{n-i-j}\right)+\Pi_{n-2}
$$

where $\alpha_{i}$ are such that $x_{0}^{\alpha_{0}} x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ is the $r$ th (in lexicographical order) monomial of degree $d$ in $n+1$ variables, and $j$ is the smallest integer such that $\alpha_{j} \neq 0$.

