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Introduction Notations and definitions

We denote :

Fq a finite field with q elements (q a power of a prime p).

Fq[X0,X1, ...,Xn]hd ∪ {0} the vector space of homogeneous
polynomials in n + 1 variables with coefficients in Fq and of degree d .

Pn(Fq) the n-dimensional projective space over Fq.

Πn = #Pn(Fq) = qn+1−1
q−1 , the number of rational points of Pn(Fq).

Π−1 = 0 (by convention, which meaning the number of points in the
empty set ).
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Introduction GRM(q, d, n) and PRM(q, d, n) Codes

We suppose d ≤ n(q − 1) and n ≥ 2.

The projective Reed-Muller code PRM(q, d , n) is the image of the map :

Φ : Fq[X0,X1, ...,Xn]hd ∪ {0} −→ FΠn
q

f 7−→ (evf (v))v∈Pn(Fq)

with
evf : Pn(Fq) −→ Fq

v = (x0 : ... : xn) 7−→ f (x0,...,xn)

xd
i

where xi is the first non-zero component of v = (x0 : ... : xn).
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Introduction GRM(q, d, n) and PRM(q, d, n) Codes

a codeword c ∈ PRM(q, d , n) is defined by the vector :

c = (evf (v1), ..., evf (vΠn)) ; with f ∈ Fq[X0,X1, ...,Xn]hd ∪ {0}.

The weight of c is the number of its non-zero coordinates.

Zq(f ) the set of zeros of f , #Zq(f ) is the number of points of the
hypersurface S defined by f , denoted also #S .

N1 = max
f ∈Fq [X0,X1,...,Xn]hd

#Zq(f ) ;

P1 : the set of non-zero polynomials f such that #Zq(f ) = N1.

The first weight, which is the minimum distance, is
w1 = dm = Πn − N1.
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Introduction GRM(q, d, n) and PRM(q, d, n) Codes

Ni = max
f ∈Fq [X0,X1,...,Xn]hd\{P1∪...∪Pi−1}

#Zq(f ), for i ≥ 2.

The i-th weight is wi = Πn − Ni , for i ≥ 1.

Pp
i : the set of polynomials f ∈ Fq[X0,X1, ...,Xn]hd such that

#Zq(f ) = Ni . It is also the number of codewords of weight wi in
PRM(q, d , n).
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Introduction GRM(q, d, n) and PRM(q, d, n) Codes

A generalized classical Reed-Muller codes GRM(q, d , n) is defined as the
image of the map

Φ : Fq[X1, ...,Xn]d ∪ {0} −→ Fqn

q

f 7−→ (f (v))v∈Fn
q

Then, the equivalent numbers, Ni ,wi , Pa
i .. already defined in the

projective case follows.
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Results on maximum number of zeros and dm Affine Case

The minimum distance is given firstly by Kasami, Lin and Peterson(1968)

Theorem

For 0 < d < n(q − 1), with d = r(q − 1) + s and s < q − 1 :

(a) The maximum number of zeros of polynomial in Fq[X1, ...,Xn]d is

N1 = qn − (q − s)qn−r−1

(b) The minimum distance of the generalized Reed-Muller codes
GRM(q, d , n) is

dmin = w1 = (q − s)qn−r−1.
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Results on maximum number of zeros and dm Affine Case

Moreover, Delsarte, Goethals and Mac Williams characterize all
polynomials having N1 zeros.

Theorem

For 0 < d < n(q − 1), with d = r(q − 1) + s and s < q − 1 :
Modulo the action of the automorphism group G (n, q), whose elements
acting as permutations of the n coordinates, the associated polynomial of
any minimum weight codeword of GRM(q, d , n) is

P(x1, ..., xn) = t0

r∏
i=1

[1− (xi − ti )
q−1]

s∏
j=1

(xr+1 − t ′j ) (1)

of degree d = r(q − 1) + s, where t ′j are distinct elements of Fq and the ti
are arbitrary elements of Fq, with t0 6= 0.
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Results on maximum number of zeros and dm Affine Case

The maximal hypersurfaces Ha
1 of degree d = r(q − 1) + s, associated to

the previous polynomials are hyperplane arrangements having the following
geometric configuration :

(i) For r directions in Fn
q, we have q− 1 parallel hyperplanes in each one,

(ii) in another direction, the (r + 1)th one, we have s parallel hyperplanes.
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Results on maximum number of zeros and dm Affine Case

â The number of minimum weight codewords in GRM(q, d , n) is

#Pa
1 = (q − 1)qr (qn − 1)(qn−1 − 1)...(qr+1 − 1)

(qn−r − 1)(qn−r−1 − 1)...(q − 1)
ηs ,

with

ηs =

{ (q
s

)qn−r−1
q−1 if 0 < s < q − 1

1 if s = 0
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Results on maximum number of zeros and dm the projective case

The minimum distance is given :

Theorem

(a) For 0 < d ≤ n(q − 1), with d − 1 = r(q − 1) + s and s < q − 1, (A.
B. Sørensen )
The maximum number of zeros of an homogeneous polynomial in
Fq[X0,X1, ...,Xn]hd is

N1 = Πn − (q − s)qn−r−1 (2)

(b) The minimum distance of the projective generalized Reed-Muller
codes PRM(q, d , n) is

dm = w1 = (q − s)qn−r−1.

(c) For d ≤ q (J.-P. Serre),
The maximal number of Fq-rational points is N1 = dqn−1 + Πn−2.
This number is reached only by hypersurfaces splits into d distinct
hyperplanes meeting in the same linear subspace of codimension 2.
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Results on maximum number of zeros and dm the projective case

a characterization of maximal projective hypersurfaces is given by Rolland
(SAGA 2008),

Lemma

A hypersurface, defined by one maximal polynomial P, attaining
N1(= Πn − (q − s)qn−r−1) points is such that : it exists an hyperplane H
defined on Fq such that P vanishes on the whole H, and P restricted to
the affine space Pn(Fq) \ H is a maximal affine hypersurface as described
in 2. Therefore P is a product of d homogeneous polynomials of degree 1.
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Results on maximum number of zeros and dm the projective case

determination of maximal polynomials and the geometric configuration of
the corresponding hypersurfaces when q < d ≤ n(q − 1) (F. ÖZBUDAK
and A. SBOUI (2009))

Theorem

The maximum number of zeros N1 = Πn − (q − s)qn−r−1 is reached by
one polynomial in the form :

P(x0, ..., xn) = x0

r∏
i=1

[(xi − tix0)q−1 − xq−1
0 ]

s∏
j=1

(xr+1 − t ′jx0), (3)

which can be written as product of d linear factors :

P(x0, ..., xn) = x0

r∏
i=1

∏
α∈Fq\{ti}

(xi − αx0)
s∏

j=1

(xr+1 − t ′jx0), (4)

of degree d, such that d − 1 = r(q − 1) + s, where t ′j are distinct elements
of Fq and the ti are arbitrary elements of Fq.
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Results on maximum number of zeros and dm Maximal Hypersurfaces for the projective case

The maximal hypersurfaces Hp
1 associated to the previous polynomials are

hyperplane arrangements having the following geometric configuration :

(a) One hyperplane H0 considered as hyperplane at the infinity, we
denote it often by H∞.

(b) There are r blocks of q − 1 hyperplanes in each one, and an (r + 1)th
block of s hyperplanes, such that the hyperplanes of each block meet
in a common linear subvariety of codimension 2 contained in H∞.

(c) The r + 1 linear subvarieties of codimension 2 contained in H∞ are in
general position, i.e. form an arrangement of r + 1 hyperplanes in
general position in the (n − 1)-dimensional projective space
H∞ ∼= Pn−1(Fq).
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Results on maximum number of zeros and dm Maximal Hypersurfaces for the projective case

Number of minimum distance codewords of the generalized projective
Reed-Muller codes GRM(q, d , n), d − 1 = r(q − 1) + s.

Corollary

The number of minimum weight codewords in PRM(q, d , n) is

#Pp
1 =

Πn

d
#Pa

1

which gives

Pp
1 =

(qn+1 − 1)qr

d

(qn − 1)(qn−1 − 1)...(qr+1 − 1)

(qn−r − 1)(qn−r−1 − 1)...(q − 1)
ηs ,

with

ηs =

{ (q
s

)qn−r−1
q−1 if 0 < s < q − 1

1 if s = 0
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weights above the minimum distance The second weight

The second weight w2, affine case :

computation of the second weight w2 = qn − dqn−1 + (d − 1)qn−2,
for q quite larger than d , by Rolland-Cherdieu. The result is extended
by Sboui for d < q/2).

using Gröbner basis theoretical methods (O. Geil (2008)) resolve the
case q/2 < d < q
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weights above the minimum distance The second weight

the second weight for d < n(q − 1) (R. Rolland (2009)) : For
d = a(q − 1) + b, n ≥ 3, q ≥ 3 and q − 1 < d ≤ (n − 1)(q − 1), the
second weight w2 of GRM(q, d , n) is given by

for q = 3

(a) if 1 ≤ a ≤ n − 1 and b = 0 then w2 = 4× 3n−a−1 ;

(b) if 1 ≤ a < n − 1 and b = 1 then 7× 3n−a−2 ≤ w2 ≤ 8× 3n−a−2 ;

for q ≥ 4

(a) if 1 ≤ a < n − 1 and 2 ≤ b < q − 1 then
w2 = qn−a−2(q − 1)(q − b + 1) ;

(b) if 1 ≤ a ≤ n − 1 and b = 0, then w2 = 2qn−a−1(q − 1) ;

(c) if 1 ≤ a < n − 1 and b = 1, then qn−a − 2qn−a−2 ≤ w2 ≤ qn−a. ? w2
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weights above the minimum distance The second weight

Second and third weights w2, w3, projective case :
(F. Rodier and A. Sboui) :

w2 = qn − (d − 1)qn−1 + (d − 2)qn−2, with q ≥ 2d .

This result is extended to q > d when (q = p prime).

w3 = qn − (d − 1)qn−1 + 2(d − 3)qn−2, with q ≥ 3d .

This result is extended to q > d + 2 (q = p prime).
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weights above the minimum distance The second weight

For d < q+1
2 + 2, the second and the third weights are reached only

by algebraic hypersurfaces which are arrangement of d hyperplanes.

For q+1
2 + 2 ≤ d < q, the third weight w3 is also reached by

hypersurfaces containing an irreducible quadric.

Example

S : f (x0, ..., xn) = (x2
2 − x0x1)x0x1

d−4∏
i=1

(x0 − αix1),

where d = q+1
2 + 3, q odd, the αi are d − 4 (= q−1

2 ) non-squares.
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weights above the minimum distance Curves with non-linear factors reaching N3

Proposition, case q even

Let C a projective plane curve of degree d over Fq,
d = q

2 + t and 3 ≤ t ≤ q
2 , composed of d − 2 concurrent lines to the same

point ω, and a conic C of nucleus distinct from ω.

If among these lines

q
2 do not intersect C ;

and there is a tangent line to C .

Then #C = N3.
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weights above the minimum distance Curves with non-linear factors reaching N3

Proposition, case q odd

Let C a projective plane curve of degree d over Fq, d = q+1
2 + t,

2 ≤ t ≤ q−1
2 , composed of d − 2 concurrent lines to the same point ω and

a conic C .

If we are in the two following situations :

(a) ω ∈ Int(C ) : among the d − 2 lines q+1
2 do not intersect C ;

(b) ω ∈ Ext(C ) : among the d − 2 lines q−1
2 do not intersect C and two

lines are tangent to C .

Then #C = N3.
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Minimal Arrangement, particular weight

(Rodier and Sboui)

Projectif case

Ad
min : a minimal arrangement of d

hyperplanes is such that : for every
1 ≤ i , j ≤ d , i 6= j , we have
Hi ∩ Hj = K i

j , where the K i
j are

(d
2

)
subspaces of dimension n − 2 all
distinct, and meeting in a common
subspace of dimension n − 3.
(2-dimension linear system of
hyperplane)

Consequence of Ad
min

For q > d(d−1)
2

â trHi
(Ad+1

min \ Hi ) = Ad
1

(pencil of hyperplanes) in
Pn−1(Fq)

N(Ad
min) =

dqn−1 + Πn−2 − (d−1)(d−2)
2 qn−2.

Adnen SBOUI () Hamming Weights and rational points on algebraic hypersurfaces over finite fieldsDecember 15th 2010 23 / 33



Minimal Arrangement, particular weight

For q > d(d−1)
2

Any algebraic projective hypersurface S of degree d , not union of d
hyperplanes, contains less points than any algebraic hypersurface which is
the union of d hyperplanes.

S : f ∈ Fq[X0,X1, ...,Xn]hd , not product of d linear factors :

#Zq(f ) < N1 −
(d − 1)(d − 2)

2
qn−2
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Minimal Arrangement, particular weight

Application : Highest weight obtained by an hyperplane arrangement

wi? = qn − (d − 1)qn−1 +
(d − 1)(d − 2)

2
qn−2.

Which is the highest weight given by an hyperplane arrangement.
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Rational points and Generalized Hamming Weight

Let C be a [n, k] linear code and D be a subcode.
The support of D, denoted χ(D), is the set of not-always-zero coordinate
positions of D, i.e., χ(C ) := {i : ∃(x1, x2, ..., xn) ∈ C , xi 6= 0}.
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Rational points and Generalized Hamming Weight

A one-dimensional subcode D of C consists of two codewords :
the zero codeword, and a nonzero codeword.
The support of D equals to the Hamming weight of the nonzero codeword.

Based on this perspective, we define the r th generalized Hamming weight
of C , denoted dr (C ), to be the size of the smallest support of an
r-dimensional subcode of C , i.e.,

dr (C ) := min{|χ(D)| : D is a subcode of C with rank r}.

Note that d1(C ) equals to the traditional minimum Hamming dm weight
of C .
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Rational points and Generalized Hamming Weight

The weight hierarchy of a linear code C is defined to be the set of integers
{dr (c), 1 ≤ r ≤ k}

Theorem

(Monotonicity) : For an [n, k] linear code C with k > 0, we have
0 < d1(C ) < d2(C ) < ... < dk(C ) ≤ n .
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Rational points and Generalized Hamming Weight

The study of generalized Hamming weights has been motivated by several
applications in cryptography :

application to t-resilient functions

application to cryptography of wire-tap channel of type II.
In fact, the generalized Hamming weights characterize the
performance of a linear code used for that channel
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Rational points and Generalized Hamming Weight

Geometric interpretation of Generalized Weights

The minimum distance equals the minimal number of points of a
projective system lying outside a hyperplane
d1 = n −max{|X ∩ H| : H a hyperplane in Pk−1(Fq)}

and the r th generalized weight equals the minimal number of points
outside a linear subspace of codimension r :
dr = n −max{|X ∩ Π| :
Π a projective subspace of codimension r in Pk−1(Fq)}
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Rational points and Generalized Hamming Weight

Generalized Weights for the case of Reed-Muller codes

For higher order Reed-Muller codes the problem is much more subtle and
reduces to the following geometric question :

Problem (a) : Let f1, ..., fr be linearly independent polynomials in n
variables of degree d or less. What is the maximum possible number of
solutions in Fn

q of the system

f1 = ... = fr = 0

For projective Reed-Muller codes the problem reads as follows :

Problem (b) : Let F1, ...,Fr , be linearly independent homogeneous forms in
n + 1 variables of degree d .
What is the maximum possible number of Fq-points on an algebraic set
defined by

F1 = ... = Fr = O ?
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Rational points and Generalized Hamming Weight

Some results

Picture of what is known on the subject :

Corollary

The second generalized Hamming weight of a projective q-ary Reed-Muller
codes PRM(q, d , n) of order d < q − 1 is equal to

d2 = Πn − (d − 1)qn−1 − πn−2 − qn−2

Adnen SBOUI () Hamming Weights and rational points on algebraic hypersurfaces over finite fieldsDecember 15th 2010 32 / 33



Rational points and Generalized Hamming Weight

Conjecture (Boguslavsky)

the weight hierarchy of a projective q-ary Reed-Muller codes PRM(q, d , n)
of order d < q is given by

dr = Πn −
n∑

i=j

αi (Πn−1 − Πn−i−j) + Πn−2

where αi are such that xα0
0 xα1

1 ...xαn
n is the rth (in lexicographical order)

monomial of degree d in n + 1 variables, and j is the smallest integer such
that αj 6= 0.
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